The Hall effect comes about due to the nature of the current in a conductor. Current consists of the movement of many small charge carriers, typically electrons, holes, or both. Moving charges experience a force, called the Lorentz Force, when a magnetic field is present that is not parallel to their motion.[2] When such a magnetic field is absent, the charges follow an approximately straight, 'line of sight' path. However, when a perpendicular magnetic field is applied, their path is curved so that moving charges accumulate on one face of the material. This leaves equal and opposite charges exposed on the other face, where there is a scarcity of mobile charges. The result is an asymmetric distribution of charge density across the Hall element that is perpendicular to both the 'line of sight' path and the applied magnetic field. The separation of charge establishes an electric field that opposes the migration of further charge, so a steady electrical potential builds up for as long as the charge is flowing.
Ferrite toroid Hall effect current transducer
Hall sensors can detect stray magnetic fields easily, including that of Earth, so they work well as electronic compasses: but this also means that such stray fields can hinder accurate measurements of small magnetic fields. To solve this problem, Hall sensors are often integrated with magnetic shielding of some kind. For example, a Hall sensor integrated into a ferrite ring (as shown) can reduce stray fields by a factor of 100 or better. This configuration also provides an improvement in signal-to-noise ratio and drift effects of over 20 times that of a 'bare' Hall device. The range of a given feedthrough sensor may be extended upward and downward by appropriate wiring. To extend the range to lower currents, multiple turns of the current-carrying wire may be made through the opening. To extend the range to higher currents, a current divider may be used. The divider splits the current across two wires of differing widths and the thinner wire, carrying a smaller proportion of the total current, passes through the sensor.
The principle of increasing the number of 'turns' a conductor takes around the ferrite core is well understood, each turn having the effect of 'amplifying' the current under measurement. Often these additional turns are carried out by a staple on the PCB.
Analog multiplication
The output is proportional to both the applied magnetic field and the applied sensor voltage. If the magnetic field is applied by a solenoid, the sensor output is proportional to product of the current through the solenoid and the sensor voltage. As most applications requiring computation are now performed by small (even tiny) digital computers, the remaining useful application is in power sensing, which combines current sensing with voltage sensing in a single Hall effect device.
references----http://en.wikipedia.org/wiki/Hall_effect#Quantum_Hall_effect
outlaw