There are a couple things I would like to add to this thread.
1) As I'm sure most of you know that if you over charge the coils, they will pull more current. A coil operates the opposite way a of a capacitor, where as while charging a capacitor the current starts off high and then current drops as a capacitor reaches 5 Time Constants. An inductor starts off with low current and the current rises and peaks as you reach 5 Time Constants. So you don't want to over charge the coils or you will get high currents. You want to stop charging the coils before it reaches 5TC.
2) As I stated in a previous thread, I have seen a strange phenomenon that I can only explain as "Parallel Resonance" occurring within a series circuit. This was done using the 8XA Circuit and high inductance bifilar coils. The coils were not equal, the L1 coil had a higher inductance than the L2 coil. The L1 coil was around 3.4H and the L2 coil was around 2.8H. When I connected the 8XA Circuit to the coil and increased the variac to around 50VDC, I would only get a voltage input reading up to 12VDC max! The voltage across the cell would read over 1,000V. The water would hold this charge as long as the input power was being supplied. The current would max out at 55mA while in resonance! My only explanation for this is that a parallel resonance was taking place between the two unequal coils! In Parallel Resonance, the coils will have a very high impedance and restrict the current to a certain level. I even demonstrated this to my electronics professor and he didn't understand what was taking place. Has anyone else tested and seen this take place???