Author Topic: Different kind of VIC Circuit  (Read 13119 times)

0 Members and 2 Guests are viewing this topic.

Hidden

• Moderator
• 50+
• Posts: 98
Re: Different kind of VIC Circuit
« Reply #32 on: June 21, 2011, 03:47:34 am »
Step down xformer.

Primary 7 turns + 7 turns #12 awg stranded wire
Secondary 3 turns + 3 turns #12 awg stranded wire.

With 30 volts in at 4 amps the cell showed 37 volts at 6.4 amps (with diode).

Step up x former

Reversing the xformer.

Primary 3 turns + 3 turns
Secondary 7 turns + 7 turns.

Primary power supply drawing several amps.  About 15 and up around 10 volts.

So a simple step-up or step-down xformer is not going to work well.

My best setup remains reply 16 of which I need to setup again and test further.

Further testing will have the primary and chokes of equal turns,  while allowing the secondary to be more turns.

Hidden

• Moderator
• 50+
• Posts: 98
Re: Different kind of VIC Circuit
« Reply #33 on: June 22, 2011, 04:19:07 am »
Looking over Stan's notes it would appear the primary matched the two chokes.

Patent  5149407
Primary 200 turns 24 awg
Secondary 600 turns 36 awg
1N1198 blocking diode. (40 amp, 600 volts, 10 khz max rating)
Choke 1, 100 turns 24 awg

Figure 2 cell size
Outside 0.75 inch outside measurement
Inside 0.50 inch  inside measurement
Spacing 0.0625 inch
26 volts to primary at 10 khz.

While the second choke is left out I believe in other areas it mentions them being the same.
I am going to work towards these specs, but I still need to drive it with AC from my driver.

Hidden

• Moderator
• 50+
• Posts: 98
Re: Different kind of VIC Circuit
« Reply #34 on: June 27, 2011, 01:25:15 am »
More testing today.

Here is some test data:
11 turns primary 2x
11 turns secondary 2x
Both 22 awg wire.
SCE stands for Series Cell Equal, so input current * (input voltage / 2)
This setup is just AC circulating in the secondary, no cell, no bridge.

Input V     Input I           Output V            Output I          Secondary Cap (uf)      Res. Freq.(khz)    Input Power(W)     SCE* @ 2 V/Cell (I)
25                0.5                  62                     1.28                       0.1                            16                        12.5                       6
25                1.1                  72.5                  4.78                       1.2                             7.5                      27.5                     13.2
25                1.6                  75.4                  6.86                       2.3                             5.6                      40                        19.2
25                1.9                  75                     8.75                       3.4                            na                        47.5                     22.8
25                2.4                  73                    11                           4.5                            4.7                       60                        28.8
25                3.9                  71.2                 15.3                        6.7                            4.4                       97.5                     46.8

50                1.5                 124                    2.48                       0.1                            16                        75                        37.5
50                2.3                 131                  12.3                         1.2                            9.3                     115                        57.5
50                4.3                 131                  20 +                         2.3                            8.5                     215                        107.5

So as the chart shows I am no where near what a series equivalent circuit will do.  While the secondary circulating power is great, some cases above 1000 watts,  the circulating current remains lower than a series cell equivalent.

The next set of tests was to add the full wave bridge to the setup:

For this I used the 2.3uf cap on the secondary for testing.

Connected         Input V            Input I           Output I           Output V
Nothing                25                    1.6                 6.86                  75
Bridge                  25                    2                    5.8                    77
Bridge & Cell        25                    2.6                 5.6                    75
Bridge & Cell        40                    4.2                 9.7                  108

So the full wave bridge looses 1 amp on the secondary and adds about 1/2 amp to the primary.
Adding the Cell looses 0.2 amp to the secondary and adds 0.6 amps to the primary.

I bypassed the cell to verify it was not wire resistance (to the cell) causing the drop.
I tried heating the water as well with the same results.
Remember this is highly conductive water with lots of KOH added.

My next step was to plot the losses against several cell and compare again to the series cell equivalent.

Cells     Input I          Input V          Series Equ.            Sec. Single I        Sec. Series I
1             2.6                 25                   31.2                        5.6                       5.6
2             3.2                 25                   38.4                        5.4                     10.8
3             3.8                 25                   45.6                        5.2                     15.6
4             4.4                 25                   52.8                        5.0                     20
5             5                    25                   60                           4.8                     24
6             5.6                 25                   67.2                        4.6                     27.6
7             6.2                 25                   74.4                        4.4                     30.8
8             6.8                 25                   81.6                        4.2                     33.6
9             7.4                 25                   88.8                        4.0                     36
10           8                    25                   96                           3.8                     38

1             4.2                 40                   84                           9.7                     9.7

As you can see from this predicted graph, based on above data, the series resonance circuit will not overcome the efficiency of a simple DC series circuit.

Part of this power loss is from these areas: Driver circuit, X former core, Bridge, Skin affect from frequency.

The losses at the cell are omitted as they would be equal on both setup's.

The one positive on this circuit is you can put any electrolyte in the water, any amount and it runs the same.  You can completely short out the cell and still have the system operate - just no gas production.

In this setup my cell was 2 switch cover plates made of SS material.  The spacing was 0.005 inch  with highly conductive water.

I also tried a step up and step down x former again.  The step up reflected the resistance to the primary and multiplied the primary current by the step up factor.
The step down x former showed the same results as the equal x former design.

Hidden

• Moderator
• 50+
• Posts: 98
Re: Different kind of VIC Circuit
« Reply #35 on: June 27, 2011, 11:08:15 am »
I can only think of 3 areas to improve this setup.

1, use CRGO (cold rolled grain oriented) x former material - supposed to be the most efficient x former material.

2, Use 2 different metals for the electrodes, Thinking Titanium or Tungsten with SS to generate a small voltage in the water.

Any data on different electrodes to cut down on time?

3, Add a separate power supply to the driver, non variable voltage. This will allow less current draw at higher voltages on the driver.

Of all these setups I am still running above my goal of 12 volts, aka car battery.

Hidden

• Hero member
• Posts: 3886
Re: Different kind of VIC Circuit
« Reply #36 on: June 27, 2011, 12:25:55 pm »
Its nice to play with resonance circuits
But at the end, i ll gues, its still plain electrolysis.
Not 1 cc more gas as with strait DC....

Do you agree?

Steve

Hidden

• Moderator
• 50+
• Posts: 98
Re: Different kind of VIC Circuit
« Reply #37 on: June 28, 2011, 02:00:26 am »
In looking at the charts I posted my setup is actually about 1/2 of what series electrolysis will do.

Looking over Meyers Independent Evaluation Report  I simply think Stanley proved higher voltage causes rapid gas production.

(actually allowing higher current flow)

One part of this report shows 80 volts to the cell at 5 amps.  That is 400 watts input power.

Another part shows 40 amps at 10 khz  - the need for the specified diode in the patent (1N1198).

There are gross errors in the evaluation report from Stanley, gas production on standard electrolysis at 4.4amps, and the efficiency  with his 1 L "demo" cell. (gas production rate for that cavity)

I need to get back to why the circulating current is so low in my system and not worry about Stan and his system.

I will note I have not looked into the super high voltage vic x former yet, with the injector system.  But, looking over what Stanley talked about with his alternator setup, and what it actually was, from the evaluation report, it is difficult to believe in his setup.

Stanley was using a low voltage to pulse the alternator.  The output of the alternator was fed through a diode and into the cell.  Simple electrolysis - no chokes, no resonance, no extras.  Just higher voltage produces gas faster (with higher current also).

Hidden

• Moderator
• 50+
• Posts: 98
Re: Different kind of VIC Circuit
« Reply #38 on: June 29, 2011, 03:35:16 am »
I wanted to see what this x former could do so I cranked it up today for one last experiment.

25 volts  input  at  20 amps,  500 watts.
65 volts output at 20 amps, 1300 watts.

Melted the 22 awg wire in about 30 seconds.

I am looking into a Metglas transformer or Amorphous core.  Both are more efficient than CRGO material.
Not sure on price yet with these, but I am guessing they are expensive.

For this past experiment, 20 amps, the core really didn't heat much.  But 30 seconds is a long ways from driving.

Still for input power vs. output current this system does not exceed a simple series cell.